Join your Zendesk Chat and PostgreSQL data
Stitch can replicate data from all your sources (including Zendesk Chat and PostgreSQL) to a central warehouse. From there, it's easy to perform the in-depth analysis you need.
Stitch can replicate data from all your sources (including Zendesk Chat and PostgreSQL) to a central warehouse. From there, it's easy to perform the in-depth analysis you need.
Integrate Zendesk Chat and PostgreSQL to turn your data into actionable insights.
Zendesk Chat is user-friendly, reliable and feature-rich chat software
Stitch offers detailed documentation on how to sync your Zendesk Chat data.
PostgreSQL is a popular database tool.
Stitch offers detailed documentation on how to sync your PostgreSQL data.
Since Stitch replicates data to a consistent schema, it works well with other tools in your stack. Once you have BLOCKNAME HERE data in your data warehouse you can use it in many ways. Modeling tools such as dbt and Looker Blocks can help you prepare your data for reporting, analytics, or machine learning.
We've developed a Looker Block for Zendesk Chat data provisioned by Stitch. This block includes prebuilt code to create dashboards and models that can help uncover insights from your Zendesk Chat data.
This Looker Block includes three dashboards that provide analysis on agent performance, ticket submissions, and overall customer support metrics. The LookML file shown here produces an overview dashboard that allows you to view understand ticket submission trends. Other dashboards included in this block are: Overview dashboard - View ticket submissions over time to understand the level at which your customers are leveraging your support team - See the breakdown of ticket submissions by channel to understand where most of your support requests are generated - See your top 20 all-time agents, requesters, and organizations by number of tickets to see identify the key players in customer support - See a ticket tag breakdown over time to understand how customer priorities have shifted Agent performance dashboard - Monitor your support team's all-time reply and resolution time to measure against SLAs - See how your team's response and reply time have fluctuated over time to identify trends and opportunities for improvement or celebration groups and more efficiently manage resources - Identify top performers in your organization Ticket submissions dashboard - Evaluate the volume at which organizations are submitting tickets to identify which organizations are requiring the most attention of your team - Identify how average tickets per organization changes over time to see whether documentation, tutorials, demos, and product changes or releases are taking a load off your team - See ticket submission volume by hour of the day and day of the week to more efficiently allocate resources
View the source on GitHub →1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
- dashboard: overview
title: Overview
layout: grid
rows:
- elements: [new_open_tickets, pending_tickets, closed_tickets]
height: 150
- elements: [tickets_and_orgs]
height: 400
- elements: [tickets_by_channel, count_by_status]
height: 400
- elements: [top_orgs, top_requesters, top_assignees]
height: 400
- elements: [ticket_tags]
height: 500
filters:
- name: date
type: date_filter
elements:
- name: new_open_tickets
type: single_value
model: zendesk
explore: tickets
measures: [tickets.count]
filters:
tickets.status: new,open
sorts: [tickets.count desc]
limit: 500
show_single_value_title: true
single_value_title: New and open tickets
show_comparison: false
listen:
date: tickets.created_at_date
- name: pending_tickets
title: Pending tickets
type: single_value
model: zendesk
explore: tickets
dimensions: [tickets.status]
measures: [tickets.count]
filters:
tickets.status: pending
sorts: [tickets.count desc]
limit: 500
show_single_value_title: true
single_value_title: Pending tickets
show_comparison: false
listen:
date: tickets.created_at_date
- name: closed_tickets
title: Untitled Visualization
type: single_value
model: zendesk
explore: tickets
measures: [tickets.count]
filters:
tickets.status: closed,solved
sorts: [tickets.count desc]
limit: 500
show_single_value_title: true
single_value_title: Closed and solved tickets
show_comparison: false
listen:
date: tickets.created_at_date
- name: tickets_by_channel
title: Tickets submitted by channel
type: looker_pie
model: zendesk
explore: tickets
dimensions: [tickets.via__channel]
measures: [tickets.count]
sorts: [tickets.count desc]
limit: 500
value_labels: legend
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
show_view_names: true
listen:
date: tickets.created_at_date
- name: tickets_and_orgs
title: Ticket submissions over time
type: looker_line
model: zendesk
explore: tickets
dimensions: [tickets.created_at_week]
measures: [tickets.count, tickets.count_distinct_organizations]
sorts: [tickets.created_at_week desc]
limit: 500
stacking: ''
show_value_labels: false
label_density: 25
legend_position: center
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: true
limit_displayed_rows: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_tick_density: default
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
y_axis_scale_mode: linear
show_null_points: true
point_style: none
interpolation: linear
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
listen:
date: tickets.created_at_date
- name: count_by_status
title: New, open, solved, and pending ticket count
type: looker_column
model: zendesk
explore: tickets
measures: [tickets.count_solved_tickets, tickets.count_new_tickets, tickets.count_open_tickets,
tickets.count_pending_tickets]
sorts: [tickets.count_solved_tickets desc]
limit: 500
stacking: ''
show_value_labels: false
label_density: 25
legend_position: center
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: true
limit_displayed_rows: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_tick_density: default
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
y_axis_scale_mode: linear
show_null_labels: false
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
listen:
date: tickets.created_at_date
- name: top_orgs
title: Top 20 organizations by tickets submitted
type: table
model: zendesk
explore: tickets
dimensions: [tickets.organization_name]
measures: [tickets.count]
sorts: [tickets.count desc]
limit: 20
show_view_names: true
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
date: tickets.created_at_date
- name: top_requesters
title: Top 20 requesters by tickets submitted
type: table
model: zendesk
explore: tickets
dimensions: [tickets.requester_email]
measures: [tickets.count]
sorts: [tickets.count desc]
limit: 20
show_view_names: true
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
date: tickets.created_at_date
- name: top_assignees
title: Top 20 agents by all time tickets
type: table
model: zendesk
explore: tickets
dimensions: [tickets.assignee_email]
measures: [tickets.count]
sorts: [tickets.count desc]
limit: 20
show_view_names: true
show_row_numbers: true
truncate_column_names: false
table_theme: editable
limit_displayed_rows: false
listen:
date: tickets.created_at_date
- name: ticket_tags
title: Ticket tags
type: looker_column
model: zendesk
explore: ticket__tags
dimensions: [ticket__tags.value, ticket__tags.created_at_month]
pivots: [ticket__tags.value]
measures: [ticket__tags.count]
sorts: [ticket__tags.created_at_month desc, ticket__tags.value]
limit: 500
column_limit: 50
stacking: percent
show_value_labels: false
label_density: 25
legend_position: center
x_axis_gridlines: false
y_axis_gridlines: true
show_view_names: true
limit_displayed_rows: false
y_axis_combined: true
show_y_axis_labels: true
show_y_axis_ticks: true
y_axis_tick_density: default
show_x_axis_label: true
show_x_axis_ticks: true
x_axis_scale: auto
ordering: none
show_null_labels: false
colors: ['#FFCC00', '#1E2023', '#3399CC', '#CC3399', '#66CC66', '#999999', '#FF4E00', '#A2ECBA', '#9932CC', '#0000CD']
listen:
date: ticket__tags.created_at_date
Stitch delivers all your data to the leading data lakes, warehouses, and storage platforms.
Give your analysts, data scientists, and other team members the freedom to use the analytics tools of their choice.
The best part? Zero engineering or ongoing maintenance. It's a no-brainer for Stitch to handle our data pipelines while our teams stay focused on our core business and growth.
Stitch is a simple, powerful ETL service built for developers. Stitch connects to your first-party data sources – from databases like MongoDB and MySQL, to SaaS tools like Salesforce and Zendesk – and replicates that data to your warehouse. With Stitch, developers can provision data for their internal users in minutes, not weeks.
Explore all of Stitch's featuresSelect your integrations, choose your warehouse, and enjoy Stitch free for 14 days.
Set up in minutesUnlimited data volume during trial
Stitch integrates with leading databases and SaaS products. No API maintenance, ever, while you maintain full control over replication behavior.
ActiveCampaign
AdRoll
Aftership
Amazon Aurora MySQL
Amazon Aurora PostgreSQL
Amazon RDS for MariaDB
Amazon RDS for MySQL
Amazon RDS for Oracle Database
Amazon RDS for PostgreSQL
Amazon RDS for SQL Server
Amazon S3 CSV
Amplitude
AppsFlyer
Asana
Autopilot
Autopilot Activities
BigCommerce
Braintree
Branch
Campaign Manager
Campaign Monitor
Chargebee
Circle CI
Close
Club Speed
Codat
Contentful
Customer.io
Delighted
Deputy
Desk.com
Dixa
Drip
DynamoDB
Eloqua
Facebook Ads
FormKeep
Freshdesk
Front
FullStory
GitHub
GitLab
Google Ads
Google Analytics
Google Analytics 360
Google Analytics 4
Google Cloud SQL MySQL
Google Cloud SQL PostgreSQL
Google Ecommerce
Google Search Console
Google Sheets
Harvest
Harvest Forecast
Heap
Help Scout
Heroku
HubSpot
IBM Db2
Impact
Import API
Intacct
Intercom
Invoiced
Iterable
Jira
Klaviyo
Lever
LinkedIn Ads
Listrak
LivePerson
LookML
Magento
Mailchimp
Mailjet
Mailshake
Mambu
MariaDB
Marketo
Microsoft Advertising (Bing Ads)
Microsoft Azure SQL Server Database
Microsoft SQL Server
Microsoft Teams
Mixpanel
MongoDB
MySQL
Netsuite
Netsuite Suite Analytics
Onfleet
Oracle
Oracle Netsuite Bronto Marketing Platform
Outbrain
Outreach
Pardot
Particle
Pendo
Pepperjam
Pinterest Ads
Pipedrive
Platform Purple
PostgreSQL
Quick Base
QuickBooks
Recharge
Recurly
Referral SaaSquatch
Responsys
Revinate
RingCentral
SFTP
Sailthru
Salesforce
Salesforce Marketing Cloud
Segment
Selligent
SendGrid
SendGrid Core
Sendwithus
ShipHero
Shippo
Shopify
Snapchat Ads
SparkPost
Square
Stripe
SurveyMonkey
Taboola
TikTok Ads
Toggl
Twilio
Typeform
Urban Airship
UserVoice
Vero
Webhooks
Workday RaaS
Xero
Yotpo
Zapier
Zendesk Chat
Zendesk Support
Zoom
Zoom (OAuth Review)
Zuora